Logarithmic estimates for continuity equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic estimates for continuity equations

The aim of this short note is twofold. First, we give a sketch of the proof of a recent result proved by the authors in the paper [7] concerning existence and uniqueness of renormalized solutions of continuity equations with unbounded damping coe cient. Second, we show how the ideas in [7] can be used to provide an alternative proof of the result in [6, 9, 12], where the usual requirement of bo...

متن کامل

Continuity estimates for porous medium type equations with measure data

We consider parabolic equations of porous medium type of the form ut − divA(x, t, u,Du) = μ in ET , in some space time cylinderET . The most prominent example covered by our assumptions is the classical porous medium equation ut −∆u = μ in ET . We establish a sufficient condition for the continuity of u in terms of a natural Riesz potential of the right-hand side measure μ. As an application we...

متن کامل

On Some Estimates for the Logarithmic Mean

We show some estimates for the logarithmic mean that are obtained from operator inequalities between the Barbour path and the Heinz means.

متن کامل

Continuity Estimates for the Monge-Ampère Equation

In this paper, we study the regularity of solutions to the Monge-Ampère equation. We prove the log-Lipschitz continuity for the gradient under certain assumptions. We also give a unified treatment for the continuity estimates of the second derivatives. As an application we show the local existence of continuous solutions to the semi-geostrophic equation arising in meteorology.

متن کامل

Some Logarithmic Functional Equations

The functional equation f(y − x) − g(xy) = h (1/x− 1/y) is solved for general solution. The result is then applied to show that the three functional equations f(xy) = f(x)+f(y), f(y−x)−f(xy) = f(1/x−1/y) and f(y−x)−f(x)−f(y) = f(1/x−1/y) are equivalent. Finally, twice differentiable solution functions of the functional equation f(y − x) − g1(x) − g2(y) = h (1/x− 1/y) are determined.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Networks and Heterogeneous Media

سال: 2016

ISSN: 1556-1801

DOI: 10.3934/nhm.2016.11.301